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1. INTRODUCTION

The Birkhoff interpolation problem [1] discussed here is the problem of
finding a polynomial F,,(x) = 2::"'0 al;xl'jk! which satisfies conditions

c,;, I). ( 1.1 )

The incidence matrix E ~.", (eilJ;'~ 1:':0 is an m )< (n -;-- I) matrix with precisely
(n I) ones; X 0= (Xl , ... , X",) is a set of distinct knots; cu, are the data.
The matrix E is regular, if problem (1.1) has a unique solution for each
selection of the set X (and of data Cik)' This happens if and only if the deter­
minant DdX) of the system (1.1) never vanishes. One distinguishes orJer­
regularity (or simply regularity), when the Xi are real and subject to the
conditions Xl < ... < x"', and real (or complex) regularity, when the x,
are arbitrary distinct real (or complex) numbers. If the determinant D1JX)
vanishes for some X, the matrix E is singular; it is strongly singular when X
is real and the determinant changes sign.

The P61ya functions of E are defined by

lI1(k) = I e il, M(k) y 111(/). k 0, ... , II. (1.2)
L~

i-,l 0

If
M(k) k -, 1, k O..... n -. J, (U)

E is called a P6lm matrix; it is a Birkholf matrix if the stronger condition is
satisfied:

k I. ( 1.4)
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If £ is a Po!ya matrix. there exists a finest vertical decomposition of E
into Polya matrices:

E (1.5)

it is called the canonical deco/llposition of E. It consists of Birkhoff matrices.
and matrices with one column.

One of the important tools in the investigation of regularity is the
coalescence of rows of E. introduced by Karlin and Karon [3] and studied
further by Lorentz and Zeller [7] and Lorentz [4] (see also [5. 6]). In this paper
we want to put this method on a broad basis, which allows multiple coales­
cence (Section 3). A central role is played here by the associativity of multiple
coalescence. This holds for the coalescence of matrices (formula (3. I.2)),
but not for their determinants. Using this fact. we obtain new criteria of
singularity (Theorems 2. 3). In particular, we find a new phenomenon:
Three rows of a matrix "can be so bad" that the matrix is singular for all
possible variations of the remaining rows.

2. LEvrLlNG FU,\CTlONS

2.1. In what follows. /II(k) will always denote a nonnegative function
with integral values. defined for k 0, ... , II. We use /Ilk interchangeably
with lJl(k), and denote by M(k) c!lf/, the sum of 111, M(k) ,= L:'~o mU).

Let g. G always denote functions of this type with ° g(k) 1, k = 0, ... , II.

For a given /II, we define the function mOCk) ,c tn,"'] with values 0 or I by
induction. We put /110° 1 if and only if mo 1. If 11I10 and hence,Wz

o arc
known for! 0..... k, we detlne m;:+1 I if and only if M i , 1 --- i~fl'O ].
It is clear that d' satisfies I1ho Ill!.. hence M/' IV[, ' k, 0..... n.

Another way to define the function 1110 is as follows. Let

1/11,1 -._- 1)_" + m,.. k 0, .... II.

(2.1.1)

Then 1/1.1, (i I if and only if fl.I.; 1. Indeed, from the definition of ni',

(H; -'14~ t-- 1) Ii! .I, I

From this we obtain the relation

k 0..... II.

(2. J .2)

(2.1.3)
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For k 0 this is immediate, and in general follows by induction. uSing
(2.1.2).

Here is a corollary of this:

Let 0 III 11, and /'v/(lld ;\41\111 ), Then p'''' Iil lt,' and for k Ill'

ILl ( ... (til,., 1) Ii 'I. ]' 1) . 111;..

This means that in our case, fJ-I. , J11,;H for k nl can he computed hy means
of the values of III I. in the interval 111 k n.

LEMMA I. For atimetioll G with 0 g(/)
then also G(!) M1°(/)-+ /H2(/). I 0.... 11.

I. let G(!)

ProoF The inequality in question is certainly true for I O. Assume that
it holds for I . 0, .... k. If fn]o(!, '- I) I. then G(k .. : I) Glk) I

M/l(k) ·i· 1'v/2(k) I M]O(/\ .!-- I) M 2(k I). If, on the other hand
mJO(k I) D. then M1(k I) M10(k) and

I) I) I) I).

The lel'el{lIl1C1iol1 of a function III is ddlned to be a function g, ~atisfYlng

o . g(k) L G(k) ,'vI (k ). k 0..... II. (2.IA)

for which G(k) is largest possible for each k.

PROPOSITION I. The lerel.lime/ion o( 1.'/ exists. is lIl1ique, and coillcides
with mO defined above.

This follows from the lemma by taking A1]
We obtain now:

PROPOSITION 2.

(M]O ,'" M 2 )0

M. M 2 O.

(2.1.5 )

As a corollary we have the "associativity forlllula"

\1;:\".
(~.1.6 )

2.2. For a function m(k) mi., k ,0.... II. with nonnegative
integral values, we define the coefficiellt o( co//ision

\(M)~· I PI.,
J. U

where (2.2.1 )
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The relation :x(M) = 0 means that III ~~ mIl, or that ° nl k 1. The
function M is in collision, rx( M) I, if and only if for some k, Mk MkO,

or, equivalently, if and only if for some k, I1lk ? 2.

PROPOSITI01\: 3. One has

l( AI i M 2 ) '\( M]) ,- .:\(Mjo -- ,'lIf2 )

,= ,e(Mj ) --- c\(M2) -+- ct(Mj(J /\42(J)· (2.2.2)

Proof. By (2.2.1) and Proposition 2.

"
o;(M j --- M z) = I (Mj(k)

i, II

II

=, I {.M](k)- Al l "(k}:
},--o

II

+ I {Al1
1Vd

i; .. °

2.3. An important property which a function M may have is the
inequality

n

I lIlt
I-I,

n- k L k =,- 0.1, .... 11. (*)

(This implies, in particular, nI" ~.; 1.)
If M" = J1 -I- I, then (*) is equivalent to the "P6Iya property" M!;;;o k I,

k ~. 0, ... ,11 - I. In this case, in (2.1. I) we have /hk = M h - k, and conse­
quently mko = f, k " 0, ... , n.

If for some °.:; 111 <; 1/, L:::
1

In/ II - II] T J, then by subtraction we
obtain that the restriction of m to the interval [0, til - I] satisfies (*1-

Let M be a function with the property (*), and let nlk I for some
o k <':: 11. The shift k ->- k -+- I transforms M into the function M 11 M,
given by M k '''' tv!;; ~ I, !VIr = MI.' I cj.. k. (In Section 3, we shall adopt a
slightly different definition of a shift of a row in a matrix.)

Obviously, if Gl ,:::; M I, then also G{ iV!I. Therefore fl.lo, MO. and
from (2.2.1) we obtain

,,(Al) - I. (2.3.1 )

It can happen that x(M) > 0:( M). but most important for us will be the
reducing shifts, for which c,(M) , :x(M) l. or. equivalently. '\1" +1".
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A function /vi. with ,'l( /vi) . O. which satisfies (*) has reducing shifts. There
are k for which nil. 2, and clearly k "> 1\ 1.. I is a reducing shift.

A multiple shift A of order ~ is a product of f3 shifts:.1 "1]'" .Ill! .

If ,I) /\ ;:(JH). then iT is in collision:x(AM) O. On thc other hand,
if~x(M l. then AM is without collision if and only if each A j is reducing.
One can take the 11; to be of the special kind described above.

PROPOSITI01\; 4. fjt!Je /lll1ctiol7 AI satisfies (> l. then M" H,,": il1 additiol7.
!'v1'" AI::, f(JI' each 17 1 \\ith the IJI'()perty that At satisfies ( ) 011 [0.11 11.

Proof. To Al in [0, 1711we a ppJy one of the "special sh ifts" /1 (k ,k I,
with /Ill. 2). Then .11M, iiJ will also satisfy (*) in [0, 11[]. We have only
to show that L~~'l mi. / 111 - k. But since 111/.,':- 2 and L;.' 1 /Ill til - k I.
we have the required inequality.

Obviously lVl"l AI"1' To IV! we again apply a special shift in [O,l1d,
and so on. until we get a level function in this interval: after this, we apply
special shifts in [111 1. 111. As a result we get '\;/0(11 1 ) .H(I1 I ).

2.4. We have even more:

PROPOSITION~. 1/ /\1/ satisfies (iJ, thel1 lor each reducing shifr J1. also
j\if AM satisfies ()- J,

Proof: Assume that .,,1: 11[ '11,

have

I III I

I destroys property ("J. Then we must

11

the sum actually being equal to 11 '., 11] I. Thus :L;: 1 1111 11 II, .
I

In" I. But since M satisfies (*). we have II1"C 1. It follows from this
1 1

that M satisfies (*) also on [0. 11] I). and by Proposition 4. M", M~; l'
1 ,

Thus, by an earlier remark, 111"u and m;o, k II] may be computed from the
function /)/t. on [11[,11], Since this function satisfies the P6Iya condition. we
have In;" I. k 11[ • ml,ll I. k Ill' m';/1 O. If M is replaced by M.
the ditTerence MI. I\lTt.o will not change for k 11, • and can only increase
jf k' 11]. The shift /1 is not reducing, This establishes our result.

A special shift of a function /\I, is also a special shift for M, M ..
Hence we obtain:

PROPOSITION 6. If /vi] /vi ~ satisfies (*), thel1 also ,l11
tl

- M:, does.

2.5. A function /vi is decomposable.

(25.11
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if there are intervals (0, k1 J, ... , [k" 1 + I, k"J, kg n with the property that
each of the restrictions M" of ,H to the corresponding interval. has
property (*):

",\

I m(!) :"~ k,\ - k
I.e/,

k I, ... , fL.

(2.5.2)

A reducing shift of /1'1 does not cross any of the points k,\. We
have therefore

(2.5.3)

and consequently

(2.5.4)

3. COALESCENCE OF MATRICES

3.1. In Section 3, wc shall disregard the order of rows of matrices.
Only when dealing with determinants in Section 4, will this order be esscntial.

Let E be an m (n -;- I) matrix which is a horizontal submatrix of a
P61ya matrix with (n --1. I) ones. Equivalently, we assume that the P61ya
functions mik). Mik) of E satisfy condition (*). The coalescence of E fo one
roH' form is the one row matrix EO with functions mO, MO. Further, let
E E1 U E2 be a decomposition of E into two matrices. formed by two
disjoint groups of rows of E. The coalescence in E of the rows of E1 is the
matrix E1°U £2; its P61ya function is M 1° ~- M 2 . It follows from Propo­
sition 6 that E1°U E2 is a P61ya matrix if £1 U £2 is one. From (2.1.5) we
obtain

(3.1. I )

and (2. ] .6) gives the associative law

For the coefficient of collision we have, from (2.2.2), the relations

C'i(EJ U E2)" a(EI ) + ,x(E2 )+- lx(EIO U E 2°); (3.1.3)

exCEl U ... U E,) = eXCEl U E2 ) + I't(EI U E2)0 U E;\)

-i- ... + ix«EI U ... U E'I)O U E,). (3.1.4)

If there is a vertical decomposition of E, F. =" E' E". then coalescence
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of a group of rows in 1:' can be performed by coalescence of the rows of F'
and EN. separately.

3.2. In particular. we consider loalc'.cence of two rows E, . L'c of!
(for example. rows numbered I and 2).

Let PI, be the function of(2.2.1). and let p , O. Then J p; Pi. Pi J

1I!f, - Ill/' is equal to I exactly when ni, - 2. 117,." !: J pi. ] if and
only if !ill. O. 1Il1" I: and LIp!. () I'or all other values of k. Let Ii, .
k/ be positions with LIp;, L Jpl, ,. l. respectively, Since 'I.:': Ll pl, O.
there is an equal number (say II) of I, . I, I"~ Since I:' Jp! (I;: O.
there are, for e\f:h k. at least a, many k' I,. as there ~lre;' I,.
Thus. 1< k. i I..... p.

The positions k, are idcntiGd with k's for which

and the l:/ arc among the k's with

(' 1:

0:

more precisely, they arc exactly the k's with (3.2.2) and p, I.
We thus obtain the Karlin-Karon [3J definition of coalescence:

(A) 1,,' is lite firST k, k. \riTh (3.2.2l: for i
k - k j • I, J<, . which salis/ies (3.2.2).

l. k.' IS Ihe firsl Ie wllh

Let £1' be the row £1 with ones in positions k, replaced by ones at the k,
Then (E, U £~)O is the sum of the disjoint rows E J ' and E.,. Row C1' il; IIII'

Iranslation of E] in this coalescence.
Let It <:.. 1'1: 11 ' <: ... <. 1,/. 1; l;' be the positiolls of all ones in

rows E, . F]', respectively.
By means of Abel's transform we obtain for the coeffIcient or collision

I'

I (k:
j=l

k "L U/ '- I,).
jo..=l

(32.3)

In analogy to (A) we have for the 1/:

(B) I,' is thc first k I, Ivilh m2(k) ~ ..... 0 (or wilh C2 ' 0);
1/ is I17cjirsl k wilh k: 1;_J, k ?': Ij and /112(k) O.

In variation with Section 2, we define a shUf.l!: k ... ,. k I oj roll' E 1 (in
coalescence with £2)' This is defined if ell, c I, CUi' -. 0, and moves this
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one to the position (k -I I). Thus, shifts of £] produce some, but not all,
shifts of the function nz. However. if iii, that is, E] u E s ' is in collision, then
there exists a shift of row E] which is a reducing shift of JIl in the sense of
Section 2. For example. let I)' be the largest Ii' not an Ii' ,lIld I the largest

(I ....- - "-

Ii preceding I;", then I -~ I I is the desired shift. Hence the r,:suits of
Section 2 hold for rmv shifts.

3.3. Maximal coalescence. Let L £1 U Es be a matrix satisfying
condition (*) of Section 2, let £1 be a one-row matrix. If £2 is a submatrix of
F"!. (obtained from E2 by replacing some of its ones by zeros), then M"!.o ;\4"!-I).

and consequently £2° is a subset of E"Il. Thus jf E]', £1" are the translatjons
(l!' row E. in the coalescenses of I:', u E"!-Il and E] U £2°, respectively. the
corresponding positions of ones, 1/. /,~. j I... " q. will satisfy

I 'j 1*I • l. ... , (f. LU.I)

Therefore, we call the matrix E[ x u Ec the maxililal coalescellce of '-'1 u E"!- .
We can find the Po/ya function Mol of Eli, if' the functions MIl:ll1d M"!.

of !~() and £2 are known. 5i nee the rows 1::1 ~ • L,I) are disjoint.1f I ' AI~o ;fII)

and

0... " n. ('-3.2)

In particular. if E is a P61ya matrix,

0... ", Ii. 1:1.3.3)

For the numbers k,. Ii: k j *, C' of the coalescence (E, u L'2"(,

"
;/(E, . E:>.) - L (ki' - k)

, I

, ..
Ii! (3.3.4)

will be called the coefIicient of collision for maximal coalescence.
Its main property is as follows:

PROPOSITION 7. Let E] u E~ be a Polya matrix and let A be a 1I1ultiple
shiP a/row E] oforder (3 y. Then lIE] u E t is not a Po/ya matrix.

Proal ]f ;r£I has ones in positions ij , then (3 == 2..: (ij ~ I;). For some.i
we must have ij > Ij *; let I be the smallest such Ij *. Then the P61ya function
Ji of IIEI satisfies M I *(/) Ji"J(/), and for the P6lya function of AE] + E~o

we have

Then also IIEI U E 2 is not a P6lya matrix.
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Let £ be a matrix with rows £1 "'" £111 , and let '/ be obtained from the
translation of row E1 in the coalescence of E1 and E, , i 2, ..., m. Then we
have (3.3. I). Sometimes more can be said:

PROPOSITION 8. Let E be a Birkhojfmatrix with ('10

I '
I I, I" . /,; I (].3.5)

Proot: We have 1,,* c n. Let /Il' be the P61ya function of the matrix
E' E~ u .. U Ell' . We enlarge row £, to row Ei with the function

m'll(k)
o

if k
if k

Then E1 u Ei is not a BirkhoJT matrix, and the numbers 1/ of this coalescence
satisfy /;' I;' .i I•... , q, and I:; 1/. There are exactly if 1 zero points
of mi. and q zero points of m'll. The latter are occupied by the Ij "'. among the
former there are all I;' . It follows that f; f)', 1; {I>"'" I; f" I . This
gives (33.5).

4. DETERMINANTS A!\JJ COALESCENCI-

Let F be an 17!' (II I) incidence matrix with VI . - I) ones. Let
X (x I , .... xlIJ be a set of distinct real or complex knots. The determinant
of the BirkhoJf interpolation problem (1.1) is given by

;' \ II !q! .... \,;,( 1\)I;C,; (+.] )

The determinant has i1 1 rows given above, corresponding to all pairs
(i, k) with eil, l. We assume that lir! .. ~ 0 if r O. The rows are ordered
lexicographically: row (I, k) precedes row (i', k') if and only if i .::: i', or
i i' and II <:: II'.

For some j. we assume that:: x is a free (real or complex) variable.
while the x, . i j. are fixed. Let lXi ' i /. j, Y be the coefficients of collision
in the coalescence of rows jlJ ' i. and of maximal coalescence. Known results
[3, 4, 7J can be summed up as follows:

THEOREM I. The determinant DL(X j is a polynomial in z of degree at
//lost y, which has zeros of order at feast (Xi at z Xi, i i" j. The Tayfor
expansion near x, is

DdX)
C' -

... 'j:-,- fh.(X')(z
/.

(4.2)

Here 1:.", E' are the matrices of coalescence of rows j, i in E, and of maximal
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coalescence of row j; X' is the set of Xi , i ,[ j, and - over the determinant
means that the rows of it inherited from Xj still remain in the old position.
The positive integers C, C* can be identified as numbers of certain (reducing)
shifts of row j.

This follows also easily from results of Sections 2 and 3. using the differen­
tiation technique of [7J.

In theorems which preserve the order XI '" < X", of the knots, we can
coalesce row i only with i L 1 or i-I. Considering the first case. we get

tJdX') 0= ( I)" DdX·). (4.3)

where a. a* are the interchange numbers (defined only modulo 2). For
example, let II·..... 1,/ be the positions of translated ones of row i under
coalescence with row i + I. 71 , .... 7, positions of ones of row i -1- I. Then a

(in coalescence of row i to row i +- I) is the number of interchanges needed
to transform the sequence

(4.4)

into its natural order.

5. ApPLICATIONS TO REGULARITY AND SINGULARITY

From Theorem I and (4.3) we derive, for coalescence of row i to row i +
in E,

LEMMA 2. Let E ~ ~t I be the sign of the delerminant DE'! X') of' Ihe
coalesced matrix E' for some set of kiwIs X'co (xi . .i cfc i). Then there exists
a set of knots X with x.i < Xi+l as dose as we wish 10 XiiI' for which

sign Dt;(x) = (-I)" E. (5.1 )

Thus. if E' is strongly singular, E is also strongly singular [3).
A new criterion of singularity is as follows. Let the P61ya matrix E contain

a horizontal submatrix consisting of p adjacent rows, F F1 U -., u F" .
For p 2. FO is obtainable in different ways by means of p - I consecutive
coalescences of rows. Consider two such ways, with interchange numbers
'li. u,'. and the coefficients ,x} • .\:/. J I ..... P - I. Because of (3.1.4) we

'" 1)-1 '"1'-1, -,have L,.}cl ('(i" L,.}~l eXi =c= (x(f) -- \:.

THEOREM 2. The matrix E is strongly sinKular i{

a 1 CJJ)l·':~ VI (mod 2). (5.2)
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Proof By the associativity law (31.2), both sequences of coalescences
will produce the same matrix £0-1 - E;, I. which will satisfy the Polya
condition. We can find a set of knots X"-J with D, (X"l) E ..,.', O.

]J-1

Applying Lemma 2 several times, we obtain two sets of knots X, X' for which

(--I )2.:" i'\ E. E.

One can vary this theorem. by allowing multiple coalescences, maximal
<.:oalescen<.:es.

As an example, we consider in more detail the case of three rows F, . F2 • Fl'
with ones in positions 11', .... I,,': I; "", I,; : I{'.... , I.;:'. By (II', ... , I,:h we denote
the translation of the row FI in coalescence (F, U F2)O, and similarly for other
coalescences.

We show that we may first perform all translations, then all interchanges.
In the coalescence « F, u F~)(1 u F~)O we have as the final set of ones

(5.3)

while coalescence (FI U (F~ U f~l)O)O leads via f~:; (f'--'. U F,S) to the sequence

(/1' .. ,1':)2'; , U;' ···.1,;):1· 1;', ... 1;'. (5.4)

We have to compare a a J -, (T2 with (T' aI' T a2" where at is the
number of interchanges for (/1' .... ' 1/)" It ..... /,;' which brings it to natural
order. or equivalently, the number of interchanges for the sequence

(A)

and (J, is the number of interchanges for the sequence consisting of ordered
sequence (A), followed by I{' .... , I;:'. Thus. a is congruent mod 2 to the
number of interchanges of (5.3) which bring it in increasing order. Similarly.
a' is the number of interchanges for (5.4). The two sequences consist of
the same integers because of the associativity law of coalescence. The
difi·erence.J (J - (T' is congruent to the number of interchanges which
transform (5.3) into (5.4). Omitting the I;' at the cnd. we have

THEOREM 3. The maTrix E is singular i/ if contains three rows for which
sequences (A) and

(8)

belong f(} dijjerenf permutation classes.

EXA \-lPlF I. if a matrix has three adjacent rows with ones in positions
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5.6; 5,7 and 6, 7, or if it has three rows with ones in positions 4; 5 and 4,
it is singular. In the first case, the sequences (A) and (B) are, respectively,

«5, 6)2 , 5, 7)3 ~~ (6, 8, 5, 7)3 = 8, 10, 5,9,

(5, 6hl . (5. 7)3= 9. 10. (5, 7hc~ 9. ]0,5,8.

EXAMPLE 2. Assume that row F1 consists of a single I in posItIOn k;
the portion of Fz with k p + I consists of one in position p. while the
portion F2' of F2 with k P + I is arbitrary; fl consists of ones in positions
o k < p. Let k o < p. The sequences of Theorem 3 are

p, p + l;

P .L I. p:

(A)

(B)

Thus. each matrix E, containing three adjacent rows F1 , r~ . fl . is strongly
singular.

EXAMPLE 3. Let the matrix E consist of three rows, with ones in positions
I. ° k p: i = 2. k = k 1 , k 2 ; i .~ 3, 0 k q, where k] p

(f k'2 • II -. fJ -,- q --'- I. The sequences of Theorem 3 are here:

(b) q-··2.... ,p-1 q- l,q.q I I

(where between * ... * the term q "f· k 1 is omitted). (J

*q, q .~- I ..... q "p*. q + k] . q p

(a) q _L 1.. ... k 2 I. k 2 ;- 1•...• q ,J P -' I. q. k'2

(A)

p - k, .

if k"!. q.

if k"l q.
(B)

so that a ' .• p -;' J1 -- k 2 in case (a), (;' ce.' 2p in case (b). Hence
L1 ,11 - k 1 - k 2 in case (a). L1 J1 - k 1 - k 2 I in case (b).

Result: if 11,- k 1 - k 2 is odd, and k"!. > q. or if 11 - k] -- k 2 is even and
k"!. c q. then the matrix E is order-singular.

As another corollary of Theorem 2 we have: Let E have a row FO. where
F F] U ... U F I , is as in Theorem 2. Then E is singular.
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