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I. INTRODUCTION

The Birkhoff interpolation problem {!] discussed here is the problem of
finding a polynomial P,(x) =- Z;f,,(, a.x"/k! which satisfies conditions

RS T N b (1.1
The incidence matrix E = (e;)) 1 /lo18 an m < (n -= 1) matrix with precisely
(n 4 1) ones; X = (xy,..., X;,) is a set of distinct knots; ¢;;, are the data.
The matrix E is regular, if problem (1.1) has a unique solution for each
selection of the set X (and of data c¢;;). This happens if and only if the deter-
minant D, (X) of the system (I.1) never vanishes. One distinguishes order-
regularity (or simply regularity), when the x; are real and subject to the
conditions x; << - << x,,, and real (or complex) regularity, when the x,
are arbitrary distinct real (or complex) numbers. If the determinant Dy(X)
vanishes for some X, the matrix E is singular; it is strongly singular when X
is real and the determinant changes sign.

The Polya functions of £ are defined by

e

m(k) = Y e Mk) - Eﬁ mih. ko0 0. (1.2)
i -1 !

If
MKy 2= k - 1, k=001, {1.3)

E is called a Pdlva matrix; it is a Birkhoff matrix if the stronger condition is
satisfied:
M, =k =2, koo Ouoon — 1. {1.4)
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BIRKHOFF INTERPOIATION PROBLEM 179

If £ is a Polya matrix, there exists a finest vertical decomposition of F
into Polya matrices:

E -~ E G SF,: (1.5)

it is called the canonical decomposition of E. It consists of Birkhoff matrices.
and matrices with one column.

One of the important toois in the investigation of regularity s the
coalescence of rows of E, introduced by Karlin and Karon {3] and studied
furiher by Lorentz and Zeller [7] and Lorentz [4] (see also [5, 6]). In this paper
we want to put this method on a broad basis, which aliows multiple coales-
cence (Section 3). A central role is played here by the associativity of multiple
coalescence. This holds for the coalescence of matrices (formula (3.1.2)),
but not for their determinants. Using this fact. we obtain new criteria of
singularity (Theorems 2, 3). In particular, we find a new phenomenon:
Three rows of a matrix “‘can be so bad™ that the matrix is singular for all
possible variations of the remaining rows.

2. LEVFLING FUNCTIONS

2.1. In what follows, m(k) will always denote a nonnegative function
with integral values, defined for & == 0,...,n. We use m,. interchangeably
with m(k). and denote by M(k) = M, the sum of m, M(k) = ZL(, m(/).
Let g. (G always denote functions of this type with 0 «J g(k) == 1,k = 0,..., n.

For a4 given m, we define the function m°(k) == m,® with values 0 or 1 by
induction. We put m,° -~ 1 if and only if m, 2= 1. If m,® and hence M," are
known for / == 0..... k, we define a1, =~ 1 if and only if M, — M,° = 1.
1t is clear that m® satisfies m,Y < ;. , hence MY <~ M, . k 0., 1

Another way to define the function m? is as follows. Let

pe ety = D my — Dy g = D)y g ko 0o.on.

Then #7," -+ T'if and only if i1, 7 1. Indeed. from the definition of m",
(A, — M) 1) =,y = M, ML -m
M.y — MJ°, ko0, .
From this we obtain the relation

Mooy 77 A{]‘. Sy /i’{,{“. (2 1 '3}
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For k .-. 0 this 1s immediate, and in general follows by induction. using
(2.1.2).

Here is a corollary of this:

Let O -~ ny -2 moand M) M%ny). Then p,, o, cand for ko

Iy (o {m,,, Iy, N 1T B FEE T/
This means that in our case, g, , m* for & n can be computed by meuans
of the values of m, in the intervat n, - & .
LEMMA 1. For a function G with O < ey - 1. let G(I) My - MDD,
then also G(Iy ==, M) 4 My). I = 0.....n.

Proof. The inequality in question is certainly true for /0. Assume that
it holds for /- 0. k. 10 o™k -+ 1) ~ 1, then Gk -+ 1) Giky 1

MPOk) -+ Moky =1 = MYk = 1) - Myk = 1). If, on the other hand
p ™k <- 1) - -0, then Mk~ 1y M,"(k) and

Gik 1 1) Mk 1y Muak 1y MOk Mgk 1
The lerel funcrion of a function sz is defined to be 4 function g, satistving
0 - gthy 1, Giky - Mk, k- 0.5 (2.1.4)
for which G(k) is largest possible for each 4.

PrROPOSITION 1. The level function of i exists. is wnique, and coincides
with m® defined above.

This follows from the lemma by taking M, - M. M, 0.
We obtain now:

PrOPOSITION 2.

|29
n

(M- MY (M - ML) o (M- MO (2.
As a corollary we have the ““associativity formula”™

((My = M) - M0 (M - (M M0 = (My = M, M),
(2.1.6)

2.2. For a function mfk) =m,, A -0,....n with nonnegative
integral values, we define the coefficient of collision

MY =Y po, where  pp o= M, AL (2.2.1)
Lou
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The relation «{M) = 0 means that m = s or that 0 = my « 1. The
function M is in collision, «(M) 2= 1, if and only if for some k, M, > M2,
or, equivalently, if and only if for some &, n1;, = 2.

ProrosiTiON 3. One has

(M, My = M) - (MY - M)
= (M) (M) -+ (M MY (2.2.2)

Proof. By (2.2.1) and Proposition 2,

WM,y — My) = Y IR+ Mulk) (M MYk

Al

= Y AMK) — M)

K==}

G S AMOK) MUY - (M M),

FSER ]

2.3. An important property which a function M may have is the
inequality
n

Y omgin -k 1, ko= 0.1,....m (*)

1ok

(This implies, in particular, p1,, < 1.)

I M, = n -i- 1, then (*) is equivalent to the “Polya property™ M, > k - I,
k = 0,..,n — 1. 1In this case, in (2.1.1) we have u, = M; — k, and conse-
quently m* = 1, k == 0,.... a.

If for some 0 = ny << n, X,’il my = n —ny + |, then by subtraction we
obtain that the restriction of m to the interval [0, ny — 1] satisfies ¢ *).

Let M be a function with the property (*), and let m; >= | for some
0« k <2 n. The shift k — k -+ 1 transforms M into the function M - - AM,
given by M, = M, — 1, M, = M, , I -+ k. {In Section 3. we shall adopt a
slightly different definition of a shift of a row in a matrix.)

Obviously. if G, =X M,, then also G, == M, . Therefore M® ::, M9, and
from (2.2.1) we obtain

(M) 2 (M) — 1. (2.3.1)

jt can happen that (M) > «(M). but most important for us wili be the
reducing shifts, for which «(M) == «(M) - 1. or. equivalently. M® - W°.
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A function M. with «(M) -~ 0, which satisfies (*) has reducing shifts, There
are £ for which m, 2= 2, and clearly & > & - 1 is a reducing shift.

A multiple shift A of order 8 is a product of 8 shifts: A+ A, - A,
If B =+ M), then A is in collision: »(AM) - 0. On the other hand,
if 8 (M), then AM is without collision if and only if cach A, is reducing.
One can take the A, to be of the special kind described above.

ProrosimioN 4. If the function M satisfies (%), then M, M0 inaddition,
M, M‘,:I Jor each ny with the property that M satisfies (*) on [0, n].

Proof. To M in {0, n,] we apply one of the “special shifts™ A (x > k - 1,
with sz, 2= 2). Then AM - M will also satisfy (*) in {0, n,]. We have only
to show that 3,2, i, 7 iy — k. Butsince m, > 2and 3 m, - ny — k- 1,
we have the required inequality.

Obviously M,,] M, . To M we again apply a special shift in [0, ],
and so on, until we get a level function in this interval: after this, we apply
special shifts in [y - 1on]. As a result. we get M(ny) - M(ny).

2.4. We have even more:

PROPOSITION 3. If* M satisfies (*), then for each reducing shift A. also
M -« AM satisfies (*).

Proof.  Assume that A:n > n, - | destroys property (7). Then we must
have
"
}; Al g

fong el

the sum actually being equal to n -, + 1. Thus Z’,Zl,Li;z, TR
m, " 1. But since M satisfies (*). we have m, -= 1. 1t follows from this
that M satisfies (*yalso on [0, #, -~ 11, and by Proposition 4, M, 1 Mﬁfl '
Thus, by an earlier remark, »1,” and m,°, & 2= n, may be computed {rom the
function #1, on [n,, #]. Since this function satisfies the Pdlya condition, we
have m. 1.k oo S o 1ok om0 1 M s replaced by M.
the difference M, - M,® will not change for & = n, . and can only increase
if & = n;. The shift A is not reducing. This establishes our result.

A special shift of a function M| is also a special shift for M, - M, .
Hence we obtain:

Propossrion 6, If M, - M, satisfies (%), then also M\° - M, does.
2.5. A function M is decomposable,

Moo= M, 7T ML (

I3

o
N
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if there are intervals [0, &1,..., [k, + 1. k], k, -~ # with the property that
each of the restrictions M, of M to the corresponding interval, has
property (¥):

Ky

Sy <k, kol ko, Tk vk, Al
Tezh

(2.5.2)

A reducing shift of M does not cross any of the points 4,. We
have therefore

MO MYE @ MO (2.5.3)

and consequently

(M) == (M) - Ao M), (

[
L
N

3. COALFSCENCE OF MATRICES

3.1, In Section 3, we shall disregard the order of rows of matrices.
Only when dealing with determinants in Section 4, will this order be essential.
Let £ be an m < (n -~ 1) matrix which is a horizontal submatrix of a
Pélva matrix with (# - 1) ones. Equivalently, we assume that the Pdlya
functions m{k). M{k) of E satisfy condition (*). The coalescence of E 1o one
row form is the one row matrix E° with functions ", MY Further, let
E = E, U E, be a decomposition of E into two matrices. formed by two
disjoint groups of rows of E. The coalescence in E of the rows of Ej is the
matrix F,° U E, ; its Polya function is M,® -+ M, . It follows from Propo-
sition 6 that E\° U F, is a Pélya matrix if E, U E, is one. From (2.1.5) we
obtain
(E, U E)" = (EOU E,)" == (E," U E)°: (3.1.1)

and (2.1.6) gives the associative law
((F, U E) U E) = (£, V(E,U E)"Y == (E, U E, U E;P. (3.1.2)
For the coefficient of collision we have, from (2.2.2). the relations
o EL U Ey) == a(E)) + a(Ey) + o By U EY); (3.1.3)

By V- UE) = olEy U E) + «((E, VL)'V E))
Tt a(EyV U E DV UE). (3.1.4)

[f there is a vertical decomposition of E, £ == E' (B E", then coalescence

6.10/20'2-3
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of a group of rows in I can be performed by coalescence of the rows of £
and £, separatcly.

3.2, in particular. we consider coalescence of two rows £, . E. of &
{for example, rows numbered 1 and 2).
Let p, be the function of (2.2.1). and ket p. ;- 0. Thendp,  p. - py

)

my " s equal to 1 oexactly when wi, - 2050 o L dp, 1t and
only if my, = 0, »,® = 1. and dp, = 0 for all other values of k. Let 4.
P . - N <7
k" be positions with dp,. 1. dp, = - 1. respectively. Since ¥, dp,. = 0.
. ) . ) - -n s -
there is an equal number {say p) of &, &/ Since 3, dp, pnoe A,
there arc, for each A, at least as many A/ 7oA. as there are +. A,
Thus, &, >~ ko j= Top
The positions A, are identical with &7s for which
€ O 8 {22003
and the &, arc among the &'s with
¢y Cas 0: (3.2

more precisely. they are exactly the &'s with (3.2.2) and p; 1.
We thus obtain the Karlin-Karon [3] definition of coulescence:

(AY Ky ds the first by oo kowitli (3.2.2Y; for | YLk s the first ko with
k >k, ok oo kL Lowhich satisfies (3.2.2).

Let £ be the row £ with ones in positions A ; replaced by ones at the &,
Then (£, U E,) i1s the sum of the disjoint rows £, and E,. Row " is the
translation of £, i this coalescence.

let /, < - <21, 0, < - 1/, ], = [/ be the positions of all ones in
rows E,, E,’, respectively.

By means of Abel’s transfornt we obtain for the coefficient of collision

8

Ly U Ey) Z_ P )_ (n — kydp,

" 3]

P
) E__ (/(.//

j=1 j=1

s

i
—_
:\'

\

[
‘\
<
—_

»

r2
o
-~

In analogy to (A) we have for the /;:

(BY [y is the first k = [, with my(k) =- 0 (or with e, = 0);
1" is the first k with k > 1_y . k 2 I; and mf(k) = 0.

In variation with Section 2, we definc a shift A: k - k -1 1 of row E| (in
coalescence with E,). This is defined if ¢,), =+ 1, ¢, ,.; = 0, and moves this
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one to the position (k - 1). Thus, shifts of E; produce some, but not all,
shifts of the function m. However, if m:, that is, £, U F,, is in collision, then
there exists a shift of row E; which is a reducing shift of »: in the sense of
Section 2. For example, let /}0 be the largest /" not an /,, and / the largest
I; preceding /] , then /— /-1 is the desired shift. Hence the results of

Section 2 hold for row shifis.

3.3. Maximal coalescence. let F = F£, U E, be a matrix satisfying
condition (*) of Section 2, let E, be a one-row matrix. If E, is a submatrix of
I, {obtained from E, by replacing some of its ones by zeros), then M - M,
and consequently E,° is a subset of £,°. Thus if £,", E* are the translations
ol vow £, in the coalescenses of £, U £ and £, U £,°, respectively, the
corresponding positions of ones, /', /7. j = 1., ¢, will satisty

R A ) (3.3.1)

Therefore, we call the matrix £, U E, the maximal coalescence of £, U [, .

We can find the Pélya function M of £,7% i the functions A7 and M,
of Z%and £, are known. Since the rows E 70 £ P are disjoint, A7F - M0 A0
and

Myw(ky = MUY — Mk, k 0., {(3.3.70)
In particular, if £ is a Pélya matrix,

M5y = k1 - MMy ko O (3.3.

L.
‘od
—

For the numbers &, ./, : A%, /% of the coalescence (£, U £

I

S U DR R B Z (A = k) - L (5F -1 (3.3.4)
I i

will be called the coefficient of collision for maximal coalescence.
[ts main property is as follows:

PrOPOSITION 7. Let ¥, U E, be a Pélya matrix and let A be a multiple
shift of row E| of order B > y. Then AE, U E, is not a Pélya matrix.

Proof. 1f /IE1 has ones in positions /;, then B =3 (Z,- — /;). For some j
we must have I, > [;*; let [ be the smallest such /;*. Then the Pélya function
M of AE, satisfies M, *(/) > M(/), and for the Pélya function of AE, -+ E,"
we have

M) + MUY < M)+ M) = 1+ 1.

Then also /IE1 U E, is not a Pélya matrix.
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Let £ be a matrix with rows E, ..... E,, . and let [ be obtained from the
translation of row £ in the coalescence of £, and E;, i = 2,..., m. Then we
have (3.3.1). Sometimes more can be said:

Prorosimion 8. Let E be a Birkhoff matrix with ey, - V. If 1 < 1% then

A A A A S A {3.3.5)

Proof.  We have 1,* <= n. Let m’ be the Pdlya function of the matrix
E = E,vu U E, . Weenlarge row £, to row E, with the function
mAky - k) it kA1,
=0 T S A

i

Then £, U E, is not a Birkhoff matrix, and the numbers /" of this coalescence
satisfy /7 =170 L., g, and {7 < n. There are exactly g - 1 zero points
of n1; , and ¢ zero points of m™. The latter are occupied by the /,*. among the
former there are all /] It follows that /Y - 4/ & = 0717 <17 . This

7
gives (3.3.5).
4. DETERMINANTS AND COALESCENCE

Let £ be an m < (1 1) incidence matrix with (7 - 1) ones. Let
X = (X ,.... x,,) be a set of distinct real or complex knots. The determinant
of the Birkhoff interpolation problem (1.1) 1s given by

Dl Ny o T kxR e i D

The determinant has 7 - - | rows given above, corresponding to all pairs
(i, k) with ¢;;, = 1. We assume that [/r! == 0 if r <2 0. The rows arc ordered
lexicographically: row (i, &) precedes row (i', k') if and only if / <2 /', or
i i and ko< k.

For some j. we assume that = -~ x, is a free (real or complex) variable,
while the v, .7« j. are fixed. Let vy, @ 4/, y be the coefficients of collision
in the coalescence of rows j, , i. and of maximal coaleseence. Known results
[3. 4, 7] can be summed up as follows:

THEOREM 1. The determinant Dy (X) is a polynomial in z of degree at

most vy, which has zeros of order at least ~; at z == x;, i # j. The Taylor
expansion near X, is

y (G . . "o~ o . )
De¥) DX - ) o Del ey @)

Here E’, E* are the matrices of coalescence of rows j, / in E, and of maximal
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coalescence of row j; X' is the set of x,, / -~ j, and ~ over the determinant
means that the rows of it inherited from x; still remain in the old position.
The positive integers C’, C* can be identified as numbers of certain (reducing)
shifts of row j.

This follows also easily from results of Sections 2 and 3, using the differen-
tiation technique of [7].

In theorems which preserve the order x, < -+ < x,, of the knots. we can
coalesce row i only with 7 -+ 1 or i — |. Considering the first case, we get

De(X'y = (1) DgAX'),  DpdX') = (1) DedX'). (4.3)

where o, o* are the interchange numbers (defined only modulo 2). For
example, let /;"....,/,” be the positions of translated ones of row / under
coalescence with row { -+ I, 1, ,.... 1, positions of ones of row i + |. Then o
{in coalescence of row i to row 7 -+ 1) 1s the number of interchanges needed

to transform the sequence

(4.4)

into its natural order.

5. APPLICATIONS TO REGULARITY AND SINGULARITY

From Theorem I and (4.3) we derive, for coalescence of row ito row i + |
mn k£,

LEMMA 2. Let € — 1 be the sign of the determinant Dg(X') of the
coalesced matrix E' for some set of knots X' = (x;.j # i). Then there exists
a set of knots X with x; < x;,, as close as we wish to x,, , for which

sign Dp(x) = (1) e. (5.1)

Thus. if £’ is strongly singular, E is also strongly singular [3].

A new criterion of singularity is as follows. Let the Polya matrix £ contain
a horizontal submatrix consisting of p adjacent rows, F == F, U -~ UF, .
For p = 2, F®is obtainable in different ways by means of p — | consecutive
coalescences of rows. Consider two such ways, with interchange numbers
o;, o,, and the coefficients «;, . j == I.....p -- 1. Because of (3.1.4) we
have Z;:l o= zi‘__ll a = ol F) oo

THEOREM 2. The matrix E is strongly singular if

T R IR S (mod 2). (.

4

N
3%
~—



188 G. G. LORENTZ

Proof. By the associativity law (3.1.2), both sequences of coalescences
will produce the same matrix E,_, -- £, ;. which will satisfy the Polya
condition. We can find a set of knots X, , with D, (X, ;) - e = 0.
Applying Lemma 2 several times. we obtain two sets of knots X, X’ for which

De(X) - (=177 e, DXy (DX

One can vary this theorem, by allowing multiple coalescences, maximal
coalescences.

Asan example, we consider in more detail the case of three rows £, . F, , £, .
with ones in positions I',.... 1,/ I} ... Lo e 0By (L. 1)), we denote
the translation of the row F| in coalescence (F; U F,)", and similarly for other
coalescences.

We show that we may first perform ali translations, then all interchanges.

In the coalescence ((F, U F,)" U F,)" we have as the final set of ones

n

(U 0 VO N 12 WO e 3 (5.3)

while coalescence (F, U (F, U F)" leads via £, - (F, U F,)° to the sequence

A B YT N 1o WO N S (5.4)

We have to compare o - o, + o, with ¢ .- 0" — 0,". where o, is the
number of interchanges for (/... 1,/ )s. {{ ... I, which brings it to natural
order. or equivalently. the number of interchanges for the sequence

W L 17y . {A)

and o, is the number of interchanges for the sequence consisting of ordered
sequence (A), followed by /['..... 7. Thus, o is congruent mod 2 to the
number of interchanges of (5.3) which bring it in increasing order. Similarly.
o' 18 the number of interchanges for (5.4). The two sequences consist of
the same integers because of the associativity law of coalescence. The
difference 4 .- o — o’ is congruent to the number of interchanges which
transform (5.3) into (5.4). Omitting the /7 at the end. we have

THeOREM 3. The matrrix F is singular if i1 contains three rows for which
sequences (A) and

(o D) g < U I, (B)
belong 10 different permutation classes.

ExavpLl 1. It a matrix has three adjacent rows with ones in positions
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5.6;5,7and 6, 7, or if it has three rows with ones in positions 4; 5 and 4,
it 15 singular. In the first case, the sequences {A) and (B) are, respectively,

((57 6)2 s 59 7)3 = (6, 89 59 7)3 = 87 10, 5, 9s
(5,6)91 . (5,13 = 9,10, (5, 7); = 9,10, 5, 8.

ExAMPLE 2. Assume that row £ consists of a single  in position &;
the portion of F, with & <" p + 1 consists of one in position p, while the
portion F," of F, with & = p + 1 is arbitrary; F, consists of ones in positions
0 < k < p. Let k, << p. The sequences of Theorem 3 are

PP R (A)
p 1L i Fy. (B)

Thus, each matrix £, containing three adjacent rows £y, F, . F,, is strongly
singular.

ExamPLE 3. Let the matrix £ consist of three rows, with ones in positions
P L0k sipidi =2,k =k ko 0 =3,0=0k = ¢, where k, = p -

L

g ky.n —=p ¢+ 1. The sequences of Theorem 3 are here:
g, q + 1., g-—p*.qg-+kiog-p+1 (A)
{where between * -~ * the term ¢ -+ &, is omitted), o = p — k, .

() g+l ky— 1 ks 1ig-p-=1l.g k, it k. g,

by g-~2..p1qg- Lgg il if k, =g,
(B)

so that o - p--n—k, in case (a), ¢ = 2p in case (b). Hence
4 n -ky —kyincase(a),d - n —~k, — k, — | in case (b).

Result: if n — ky — ky 15 odd, and k, > ¢, or if n — k; — k, is even and
k, - = g, then the matrix £ is order-singular.

As another corollary of Theorem 2 we have: Let £ have a row F", where
£ F,u U Fisas in Theorem 2. Then E is singular.
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